

Wheat Straw

REFERENCE MATERIAL

Pedigree

Location: Jefferson County, ID Class: Classic Hard White

Harvested: 2014

Received at INL: 2015

Sample Preparation: Ground to pass through a 2-inch sieve using a Vermeer BG480 grinder followed

by a 1-inch sieve using a Bliss Hammermill

Composition

Table 1. Chemical composition^a of Reference Wheat Straw (mean of analyses completed 6/2015 & 7/2015)

%Structural Ash	%Extractable Inorganics	%Structural Protein	%Extractable Protein	%Water Extracted Glucan ^b	
5.50	3.37	3.07	1.19	1.56	
%Water Extracted Xylan ^b	%Water Extractives Others	%EtOH Extractives	%Lignin	%Glucan	
0.92	4.76	2.76	16.27	32.24	
%Xylan	%Galactan	%Arabinan ^c	%Acetate	%Total	
16.95	1.60	3.17	1.70	95.05	

^aDetermined using NREL "Summative Mass Closure" LAP (NREL/TP-510-48087)

Proximate, Ultimate & Calorimetry

Table 2. Proximate, ultimate, and calorific values for Reference Wheat Straw (reported on a dry basis; completed 5/2015)

Proximate ^a			Ultimate ^b						Calorimetry ^c	
%Volatile	%Ash	%Fixed Carbon	%Hydrogen	%Carbon	%Nitrogen	%Oxygen	%Sulfur	HHV	LHV	
77.04	9.07	13.89	5.90	45.02	1.06	38.82	0.12	7742	6333	

^aProximate analysis was done according to ASTM D 5142-09

^bDetermined by HPLC following an acid hydrolysis of the water extractives

^c%Arabinan value includes %mannan, because arabinose and mannose co-elute on the HPLC column

^bUltimate analysis was conducted using a modified ASTM D5373-10 method (Flour and Plant Tissue Method) that uses a slightly different burn profile. Elemental sulfur content was determined using ASTM D4239-10, and oxygen content was determined by difference

^cHeating values (HHV, LHV) were determined with a calorimeter using ASTM D5865-10

Elemental Ash

Table 3. Elemental ash composition^a of Reference Wheat Straw (completed 7/2015)

%Al as Al ₂ O ₃	%Ca as CaO	%Fe as Fe ₂ O ₃			%Mn as MnO			%Si as SiO₂		%S as SO₃
2.77	10.83	2.99	15.45	2.69	0.07	1.16	2.15	58.16	0.11	2.34

^aDetermined as described in ASTM standards D3174, D3682 and D6349

Lignin Chemistry

Table 4. Lignin chemistry of Reference Wheat Straw (completed 9/2015)

Monolignol Composition ^a			Linkage A	Cinnamate Content ^a				
p-Hydroxyphenyl (H) content (% of total H+G+S)	Guaiacyl (G) content (% of total H+G+S)	Syringyl (S) content (% of total H+G+S)	ß-aryl ether (ß-O-4) (fraction of total) ^c	Phenylcoumaran (ß-5/a-O-4) (fraction of total)	Resinol (ß-ß) (fraction of total)	Dibenzodioxocin (5-5/4-O-ß) (fraction of total)	Ferulate content (% of total cinnamates)	p-Coumarate (% of total cinnamates)
3	58	39	89	10	1	0	84	16

^aDetermined by integration of peak volumes of ball-milled whole cell wall samples, swelled in 4:1 DMSO:Py, and analyzed by gel-state HSQC NMR (Mansfield, S. D., et al. (2012) Nature Protocols, 7(9), 1579-1589)
^bQuantitative data on the different types of chemical linkages between monolignols in a biomass sample. Determined by integrating peak volumes in solution-state HSQC NMR spectra of acetylated whole cell wall samples
^cEther bond between the ß carbon on one monolignol to the phenolic oxygen on a second monolignol. This is typically the most common linkage found in native lignin samples (Vanholme, R., et al. (2010) Plant Physiol., 153, 895-905)

Particle Characteristics

Figure 1. Cumulative passing percent of 1-inch Reference Wheat Straw determined according to ANSI/ASAE S319.4 using a Ro-Tap test sieve shaker (Model RX-29, W.S. Tyler) and a 15 minute total sieving time (completed 6/2015). The cumulative passing percentile sieve sizes (e.g., t_{16}) were calculated by interpolation and represent theoretical sieve sizes that would retain 16, 50 or 84% of the particles by mass.

Contact

For questions regarding biomass material or analytical data please contact Amber Hoover at amber.hoover@inl.gov or 208-526-5992.

Visit the Bioenergy Feedstock Library (https://bioenergylibrary.inl.gov) for more information on biomass feedstocks.

Revised on 11/28/2016.